
www.manaraa.com

DEPENDABLE AND FLEXIBLE BOARD
COMPUTER SOFTWARE FOR PICO

SATELLITES

Sergio Montenegro*, Klaus Briess**, Hakan Kayal**
*FhG FIRST

Kekulestr 7, 12489 Berlin
www.first.fhg.de/~sergio, sergio@first.fhg.de

**Technical University Berlin, Institute of Aeronautics and Astronautics
Marchstr 12, 10587 Berlin

Klaus.briess@ilr.tu-berlin.de, Hakan.Kayal@TU-Berlin.de

1. ABSTRACT

An increasing number of pico satellites, are currently being developed and tested in

space. Based on the development of California Polytechnic State University and Space
Stanford University, these so called CUBESAT’s with max 1 kg mass and 10 x 10 x 10
cm has the potential to become a very useful tool for space applications, if some of the
key technologies such as a powerful and flexible board computer and attitude control
devices can be adopted to this the very small form factor.

The Technical University of Berlin is also working on a CUBESAT family (see
figure 1). Some of them could fly in different constellations, missions and with different
payloads. Thus, such projects require a very high flexibility without lowering
dependability. Based on these requirements we propose a board computer with
following characteristics: Modular, high performance, configurable hardware, different
IO and interconnection network capabilities.

The control computer of the first generation is based on the PowerPC CPU Family.
The first Version is a compact
single board Controller running at
60 Mhz. On the same board are a
CAN controller, UARTS, Ethernet
controller and several digital I/O
signals. The next Version will
implement a very low power CPU
and configurable hardware like
FPGAs to be able to reload
hardware to match different
applications and payloads. In this
way the TUB-Cube-Sat Bus can be
configured very easily for different
missions, devices and payloads.

Figure 1: TU-Cube-Sat Model

www.manaraa.com

To be able to experiment with different configurations, architectures and devices, the
system software has to be modular and constructed using independent components. For
this purpose we use the real time Operating System BOSS, which was developed
originally for the BIRD satellite (already 3 years in orbit). BOSS was designed for
dependability and simplicity, because complexity is the root of most development errors
– if you eliminate complexity, you eliminate most development errors.

Our aim is to obtain the greatest possible dependability of embedded systems by
reducing development errors (through simplicity) and handling runtime anomalies (by
fault tolerance support). The principles underlying the creation of BOSS and its
middleware were: find and build the irreducible complexity, use modern framework
technology for the underlying operating system (BOSS) and component technology for
the middleware and its applications.

2. CONTROL SYSTEM FOR MICROWHEELS

A control Computer from FHG First was used within the frame of the TU-Berlin

project in which the micro wheels for pico satellites, where the basic control
mechanisms were developed and tested. An important design decision was to use a
CAN-BUS to interconnect all devices in the satellite (see figure 2).

 Figure 2: Devices and CAN bus in the Microwheel prototype

In this way, the control computer has direct access to all devices, in the same way

like any other device. In normal case the control computer has the total control over the
satellite, but in an emergency case it is possible to send commands from the radio
receiver (telecomanding) directly to any device in the satellite using the same (CAN)
protocol like the board computer.

3. THE OPERATING SYSTEM BOSS AND ITS MIDDLEWARE

BOSS (from FhG FIRST) is a real-time embedded operating system and middleware,

which were designed for safety and simplicity and to allow their own mathematically
formal verification. Complexity is the root of most development errors – if you
eliminate complexity, you eliminate most development errors. This was one target of
BOSS. The BOSS-middleware simplicity allows the system to be easily understood,
used and ported to other platforms even to FPGA (Field Programmable Gate Array)

www.manaraa.com

logic. The BOSS middleware has already been implemented and is being used in
software for real-time dependable systems. We now aim to implement the same
middleware in FPGA hardware. This will bring hardware and software developers
together in an environment that is familiar to both. It makes no difference whether
applications running on top of the BOSS middleware are implemented in software or
hardware. For communication purposes, it makes no difference whether the
communication partner is implemented in hardware, software or both. The BOSS
middleware allows any combination of communication (SW/SW, SW/HW, HW/SW,
HW/HW) and creates a (Flying Laptop) satellite standard interface between software
and hardware without needing different device drivers for different devices.

3.1. The BOSS-Middleware principle

The BOSS-Middleware provides very simple communication mechanisms for

applications running on the top of it, regardless if they are implemented in software or
in (FPGA) hardware (now in development). It was designed to support fault tolerance.
All processes running on top of the BOSS-Middleware can exchange messages
asynchronously using a subscriber protocol: a process or a hardware device can
subscribe to one or more message types by name. When a process or a hardware device
sends a message of a given type (name), each subscriber to this name receives a copy of
the message. For communication purposes, the node and even the software/hardware
barriers/boundaries are transparent. The messages are distributed across these barriers.
Using this approach, we obtain very high flexibility and users do not have to
differentiate between local/remote functions or hardware and software functionality.
The system can be configured or reconfigured simply by plugging software modules or
hardware devices into/out of the middleware.

The BOSS-Middleware provides transparent support for fault tolerance. The simplest
example of this is a controller sending commands (messages) to a device. As a first
step, we insert the middleware between the device and the controller by implementing
the same interface on both sides of it. Neither the controller nor the device notices this
intervention. The middleware forwards the messages across node boundaries, which
means that controller and device no longer need to be located in the same node.
Furthermore, messages can be replicated if there is more than one subscriber to a
message type (name). Now we can add a monitor to hear messages of the same type,
like the device. The monitor can create a log file and/or execute an online diagnosis of
the system. Again, no one will notice this intervention.

The next step is to replicate the controller, simply by creating several instances of it,
if possible running on different nodes. They need not know about the existence of the
other replicas. What is needed now that are voters that intercept all messages to the
device, compare them and send only those that are most likely to be right (a democratic
decision, e.g. two of three) to the device. If required, it is possible to replicate the voter,
too. One voter – the worker (as in BIRD) – is in charge and the other one – the
supervisor (as in BIRD) – is a hot redundancy. The supervisor is ready to take control if
the voter in charge fails to respond.

The routing of messages depends only on the types/names of the messages and on
who is subscribed to each name.

www.manaraa.com

8. REFERENCES

1999: Montenegro, S.: Entwicklung sicherheitsrelevanter Systeme, Hanser Verlag, ISBN: 3-446-21235-3

2003: Briess, K., Baerwald, W., Gill, E., Halle, W., Kayal, H., Montenbruck, O., Montenegro, S., Skrbek,
W., Studemund, H., Terzibaschian, T., Venus, H.:
Technology Demonstration by the BIRD Mission
4th IAA Symposium on Small Satellites for Earth Observation, April 7-11, 2003
ISBN 3-89685-569-7

2002: Briess, K., Bärwald, W., Hartmann, M., Kayal, F., Krug, H.3, Lorenz, E., Lura, F., Maibaum, O.,
Montenegro, S., Oertel, D., Röser, H.P., Schlotzhauer, G., Schwarz, J., Studemund, H., Turner, P.,
Zhukov, B.:
Orbit Experience and First Results of the BIRD Mission
53rd International Astronautical Congress The World Space Congress 2002, October 10-19, 2002,
Houston, Texas, USA

2002: Briess, K., Montenegro, S., Bärwald, W., Halle, W., Kayal, H., Lorenz, E., Skrbek, W.,
Studemund, H., Terzibaschian, T., Walter, I.:
Demonstration of Small Satellite Technologies by the BIRD Mission
16th Annual AIAAA/USU Conference on Small Satellites, Logan, Utah, USA 2002

2002: Montenegro, S., Barr, V.:
BOSS/Ada: An Open Source Ada 95 Safety Kit
Ada Deutschland Conference 2002, March 6-8, 2002, Jena, Germany

